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SUMMARY: A new, biomimetic template operated strategy has been developed leading to 
regiospecific synthesis of imidazoles (CHARTS I 6 II). 

For a number of years we have been interested in developing a biomimetic synthesis of 

histidine via chemically simulating the salient features of ATP-Imidazole cycle 
1,ll . 

Histidine is synthesized in Nature using a unique template operation where a parent monomeric 

imidasole acts as a template 
2 

on which a daughter imidasole is grown. We report here the 

first successful template operation for the construction of N-protected 5-substituted 

imidazoles (CHART Ij3. 

CHART I 

iHpPh f iH2Ph 

5-Aminoimidazole-4-carboxamide (Aj4, which initiates the ATP-Imidasole cycle was trans- 

formed to 9-benzyl-6-chloropurine (a. HCONH2 b. POClS-PhN(Me)2 c. PhCH2C1-K2C03), which, on 

careful treatment with 1N HCl, gave 9-benzylhypoxanthine (1) in 76% yields 5,6 . Specific 

N-l alkylation of L7 was achieved, by treatment of the potassium salt-generated with KOH 

(1 eq) - with PhCOCH2Br in ethanol, leading to 1-phenacyl-9-bensyl hypoxanthine (z)8'9, mp. 

201' in 82% yields. Compound 2 on reflux in xylene for 12 hr with PhCH2NH2(4 eq) and 
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anhydrous p TsOH (3 en), followed by evaporation of solvents, chromatography on silica gel 

andelution with PhH: EtOAc:: 

(4j9 mp.lllO 

1:l gave 36% of the daughter product 1-benzyl-5-phenyl imidazole 

and upon further elution with PhH:EtOAc::2:3, 33% of 1-benzyl-5-aminoimidazole- 

4-benzylamide (~)g'lo mp. 162', which is directly related to the parent imidazole 1 (CHART I). 

In principle, the novel strategy for the synthesis of 5-substituted imidazoles described 

above (CHART I), can be transplanted to more adaptive, in vitro templates by incorporation of -- 

the operating segment of the cycle, namely, the vicinal disposition of an amino and carboxyl 

functions, on a rigid, unreactive anchor. The logical choice for such a template would be 

anthranilic acid (6) and we have been able to demonstrate here, after diverse infructuous 
11 - 

approaches that it is effective as an excellent mimic of the ATP-Imidazole cycle. 

Anthranilic acid (5) was transformed to 4-quinazolone (1) and regiospecifically alkylated 
12 

with PhCOCH2Br and MeCOCH2Br - under conditions defined for 9-benzyl hypoxanthine- leading 

to, respectively, 3-phenacyl-4-quinazolone (8, 40%, mp. 
0 13 

159 ) and 3-acetonyl-4-quinazolone 

(2, 50%, mp. 15g")13 
0 14 

(lit. mp. 159 ) . Compound 8 proceeded through the cycle on reflux in 

xylene for 12 hr with PhCH2NH2 (4 eq) and anhydrous p TsOH (2 eq) and gave on chromatography 

on silica gel, 71% of anthranilic acid benzylamide (12, PhH:EtOAc::4:1, mp. 
0 13 

123 ) (lit. mp. 

1230)15 and 69% of the template product 4 (PhH:EtOAc::3:2). - Compound 12 could be readily 

transformed, to the template 5, with acids. Similarly, the compound 5 on reflux in benzene 

with cyclohexylamine gave 65% anthranilic acid cyclohexylamide (2, mp. 154 
0 13 
) (lit. mp. 

0 15 
156 1 , 

13 
and 70% of 1-cyclohexyl-5-phenyl imidazole (lo, bp. 180'/0.1 torr) . Finally, 

the acetonyl compound 2 when processed through the cycle on reflux in xylene with PhCH2NH2, 

gave 45% of 12 and 55% of the template product, 
a 13 

1-benzyl-5-methyl imidazole (11, PhH:EtOAc 

::2:3, mp. 99 1 (CHART 11)16, whose structure was confirmed by comparison with an authen- 

tic sample prepared via the lengthy sequence: D-fructose+4-hydroxymethyl imidazole+5-hydro- 

xymethyl imidazole--+l-benzyl-4-hydroxymethyl imidazole+l-benzyl-5-hydroxymethyl imidazole, 

chromatographic separation of the desired 5-isomer, 

(Pd/C/H2)17. 

halogenation (SOC12) and reduction 

The daughter product, 1-benzyl-5-methyl imidazole (11) on treatment with - 

Se02 followed by NaBH4, gave l-benzyl-5-hydroxymethyl imidazole, which on de-protection 

(Pd/C/H2), reaction with SOC12 followed by alkylation with NaCX(COOEt)2 and hydrolysis gave 

dl-histidine (X=NHAc). 

The three crucial operations involved in the realization of ATP-Imidazole cycle are, 

specific N-alkylation, cyclization and cleavage. Whilst, we have been able to prepare a 

variety of specifically N-alkylated hypoxanthines and quinazolones, the later events take 
11 

place only when the substituent carries an enamine type unit . Indeed, the first successful 

simulation was achieved with 3-o-aminophenyl-4-quinazolone (mp. 1400), which was prepared 

from 4-quinazolone and o-phenylenediamine. This, on reflux in aqueous 1N NaOH for 1.5 hr 

gave 73% benzimidazole and 79% anthranilic acid. Since the cyclization step can be expected 

to be reversible, the crucial stage is the irreversible separation of the daughter hetero- 

cycle. It appears that the enamine unit provides the needed incentive in the sense that the 

addition as well as the separation steps are made favourable. Provided that the above 

mentioned conditions are satisfied, this cyclic strategy can be used to prepare a variety 



5703 

CHART II 

fi : Me CH2Ph 

of heterocycles. Studies in this area will be reported in future publications. 
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2 
and triazoles 
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